The Picard–vessiot Antiderivative Closure

نویسندگان

  • Andy R. Magid
  • ANDY R. MAGID
چکیده

F is a differential field of characteristic zero with algebraically closed field of constants C. A Picard–Vessiot antiderivative closure of F is a differential field extension E ⊃ F which is a union of Picard–Vessiot extensions of F , each obtained by iterated adjunction of antiderivatives, and such that every such Picard– Vessiot extension of F has an isomorphic copy in E. The group G of differential automorphisms of E over F is shown to be prounipotent. When C is the complex numbers and F = C(t) the rational functions in one variable, G is shown to be free

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Differential Azumaya Algebras and Non-commutative Picard–Vessiot Cocycles

A differential Azumaya algebra, and in particular a differential matrix algebra, over a differential field K with constants C is trivialized by a Picard–Vessiot (differential Galois) extension E. This yields a bijection between isomorphism classes of differential algebras and Picard–Vessiot cocycles Z(G(E/K), PGLn(C)) which cobound in Z (G(E/K), PGLn(E)).

متن کامل

A Categorical Approach to Picard-vessiot Theory

Picard-Vessiot rings are present in many settings like differential Galois theory, difference Galois theory and Galois theory of Artinian simple module algebras. In this article we set up an abstract framework in which we can prove theorems on existence and uniqueness of Picard-Vessiot rings, as well as on Galois groups corresponding to the Picard-Vessiot rings. As the present approach restrict...

متن کامل

Generic Picard-vessiot Extensions for Connected-by-finite Groups

We construct generic Picard-Vessiot extensions for linear algebraic groups which are isomorphic to the semidirect product of a connected group G by an arbitrary finite group H, where the adjoint H-action on the Lie algebra of G is faithful.

متن کامل

Generic Rings for Picard–Vessiot Extensions and Generic Differential Equations

Let G be an observable subgroup of GLn. We produce an extension of differential commutative rings generic for Picard–Vessiot extensions with

متن کامل

Generic Picard-vessiot Extensions and Generic Equations

The notion of a generic Picard-Vessiot extension with group G is equivalent to that of a generic linear differential equation for the same group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001